Categories
- Pharmacy
- Nursing
-
MBA
-
BBA
- U.P. State University
- Veer Bahadur Singh Purvanchal University, Jaunpur
- Chaudhary Charan Singh University, Meerut
- Dr. Bhimrao Ambedkar University, Agra
- Chhatrapati Shahu Ji Maharaj University, Kanpur
- Mahatma Jyotiba Phule Rohilkhand University, Bareilly
- Mahatma Gandhi Kashi Vidyapith, Varanasi
- Dr. Ram Manohar Lohia Avadh University, Ayodhya
- Deen Dayal Upadhyaya Gorakhpur University
- Prof. Rajendra Singh (Rajju Bhaiya) University, Prayagraj
- BCA
-
B Ed
- Lucknow University B.Ed Books
- Chaudhary Charan Singh University/Maa Shakambhari University, Saharanpur
- Dr Bhim Rao Ambedkar University, Agra
- Mahatma Gandhi Kashi Vidyapeeth, Varanasi
- Chhatrapati Shahu Ji Maharaj University
- Prof. Rajendra Singh (Rajju Bhaiya) University, Prayagraj (PRSU)
- Mahatma Jyotiba Phule Rohilkhand University(Mjpru), Bareilly
- Dr. Ram Manohar Lohia Avadh University, Ayodhya
- Bundelkhand University, Jhansi
- Deen Dayal Upadhyaya Gorakhpur University
- Veer Bahadur Purvanchal University (VBPU)
- Maharaja Suhel Dev State University ,Azamgarh (MSDSU)
- Raja Mahendra Pratap Singh State University, Aligarh (RMPSSU)
- Barkatullah Vishwavidyalaya (Bhopal)
- Jiwaji University (Gwalior)
- Vikram University (Ujjain)
- Dr. Harisingh Gour University (Sagar)
- Devi Ahilya Vishwavidyalaya (Indore)
- Rani Durgavati Vishwavidyalaya (Jabalpur)
- Awadhesh Pratap Singh University (Rewa)
- Maharaja Chhatrasal Bundelkhand University (Chhatarpur)
- D. EL. ED
- TET
-
B Com
-
B Sc
- B.Sc. U.P. State Universities Common Syllabus NEP
- Veer Bahadur Singh Purvanchal University, Jaunpur
- University of Lucknow
- Chaudhary Charan Singh University, Meerut
- Madhya Pradesh
- Chhatrapati Shahu Ji Maharaj University, Kanpur
- Dr. Bhimrao Ambedkar University, Agra
- Mahatma Gandhi Kashi Vidyapith, Varanasi
- DEEN DAYAL UPADHYAYA GORAKHPUR UNIVERSITY
- Prof. Rajendra Singh (Rajju Bhaiya) University, Prayagraj
- Dr. Ram Manohar Lohia Avadh University, Ayodhya
- Mahatma Jyotiba Phule Rohilkhand University, Bareilly
- Uttarakhand State Universities
- B.Sc. Bihar Universities Common Syllabus NEP
- University of Rajasthan (Jaipur)
- Haryana
-
B A
- B.A. Of U.P. State Universities Common Syllabus NEP
- Veer Bahadur Singh Purvanchal University, Jaunpur
- University of Lucknow
- Chaudhary Charan Singh University, Meerut
- Chhatrapati Shahu Ji Maharaj University, Kanpur
- Dr. Bhimrao Ambedkar University, Agra
- Mahatma Gandhi Kashi Vidyapith, Varanasi
- Deen Dayal Upadhyaya Gorakhpur University
- Prof. Rajendra Singh (Rajju Bhaiya) University, Prayagraj
- Dr. Ram Manohar Lohia Avadh University, Ayodhya
- Mahatma Jyotiba Phule Rohilkhand University, Bareilly
- Madhya Pradesh
- Uttarakhand
- Bihar
- University of Rajasthan (Jaipur Syllabus as Per NEP2020)
- Haryana NEP-2020
- B Tech
Perspectives of Modern Physics (Part-A) (Bilingual Format) आधुनिक भौतिकी के परिप्रेच्छ

Click below to Buy E-Book Edition:
Buy Perspectives of Modern Physics (आधुनिक भौतिकी के परिप्रेच्छ) Book for B.Sc 4th Sem Book in Bilingual (English+Hindi) specially designed for All U.P State Universities CCSU, DBRAU, MGKVP, PRSU, etc.
AUTHORS : English - Dr. Deepti Saxena ,Dr. Sachin Kumar Sharma
Hindi - Prof. (Dr.) Lalit Kumar Diwedi , Dr. Praduman Chaturvedi
ISBN : 9789357550307
Tax excluded
Click below to Buy E-Book Edition:
Buy Perspectives of Modern Physics (आधुनिक भौतिकी के परिप्रेच्छ) Book for B.Sc 4th Sem Book in Bilingual (English+Hindi) specially designed for All U.P State Universities CCSU, DBRAU, MGKVP, PRSU, etc.
AUTHORS : English - Dr. Deepti Saxena ,Dr. Sachin Kumar Sharma
Hindi - Prof. (Dr.) Lalit Kumar Diwedi , Dr. Praduman Chaturvedi
ISBN : 9789357550307
Syllabus
Physics (HkkSfrd foKku)
Perspectives of Modern Physics
Course Code: B010401T
Units |
Topics |
No. of Lectures |
|
Part-A Perspectives of Modern Physics |
|
I |
Relativity-Experimental Background Structure of space & time in Newtonian mechanics and inertial & non-inertial frames. Galilean transformations. Newtonian relativity. Galilean transformation and Electromagnetism. Attempts to locate the Absolute Frame: Michelson-Morley experiment and significance of the null result. Einstein’s postulates of special theory of relativity. |
7 |
II |
Relativity-Relativistic Kinematics Structure of space & time in Relativistic mechanics and derivation of Lorentz transformation equations (4-vector formulation included). Consequences of Lorentz Transformation Equations (derivations & examples included): Transformation of Simultaneity (Relativity of simultaneity); Transformation of Length (Length contraction); Transformation of Time (Time dilation); Transformation of Velocity (Relativistic velocity addition); Transformation of Acceleration; Transformation of Mass (Variation of mass with velocity). Relation between Energy & Mass (Einstein’s mass & energy relation) and Energy & Momentum. |
8 |
III |
Inadequacies of Classical Mechanics Particle Properties of Waves: Spectrum of Black Body radiation, Photoelectric effect, Compton effect and their explanations based on Max Planck’s Quantum hypothesis. Wave Properties of Particles: Louis de Broglie’s hypothesis of matter waves and their experimental verification by Davisson-Germer’s experiment and Thomson’s experiment. |
8 |
IV |
Introduction to Quantum Mechanics Matter Waves: Mathematical representation, Wavelength, Concept of Wave group, Group (particle) velocity, Phase (wave) velocity and relation between Group & Phase velocities. Wave Function: Functional form, Normalisation of wave function, Orthogonal & Orthonormal wave functions and Probabilistic interpretation of wave function based on Born Rule. |
7 |
ikB~;Øe
vk/kqfud HkkSfrdh ds ifjçs{;
bdkbZ |
fo"k; |
O;[;kuks dh la[;k |
|
Part-A |
|
1 |
lkis{krk& çk;ksfxd i`"BHkwfe U;wVksfu;u ;kaf=dh rFkk tM+Roh; vkSj vtM+Roh; Ýse esa Lisl rFkk le; dh lajpukA xSyhfy;u ifjorZuA U;wVksfu;u lkis{krkA xSfyfy;u ifjorZu vkSj fo|qrpqacdRoA fujis{k Ýse dks Kkr djus dk ç;kl& ekbdylu&e‚ysZ ç;ksx vkSj 'kwU; ifj.kke dk egRoA vkbaLVhu ds lkis{krk ds fo'ks"k fl)kar ds fl)karA |
7 |
2 |
Lkkis{krk&lkis{kdh; 'kq)xfrdh lkis{kdh; ;kaf=dh esa Lisl vkSj le; dk fuekZ.k rFkk yksjsat+ :ikarj.k lehdj.kksa dh O;qRifÙk ¼4&lfn’k lw=hdj.k 'kkfey gS½A yksjsaRt+ :ikarj.k lehdj.kksa ds ifj.kke ¼O;qRifÙk vkSj mnkgj.k 'kkfey gSa½& ledkfydrk dk :ikarj.k ¼ledkfydrk dh lkis{k ½( yackà dk :ikarj.k ¼yackà ladqpu½( le; dk :ikarj.k ¼dky o`f)½( osx dk :ikarj.k ¼ lkis{kdh; osx ;ksx½( Roj.k dk :ikarj.k ( æO;eku dk :ikarj.k ¼osx ds lkFk æO;eku dk :ikarj.k½A ÅtkZ vkSj æO;eku ds e/; lacaèk ¼vkbaLVhu dk æO;eku rFkk ÅtkZ lacaèk½ vkSj ÅtkZ rFkk laosxA |
8 |
3 |
fpjlEer ;kaf=dh dh vi;kZIrrk rjaxksa ds d.k xq.k&—f".kdk fiaM fofdj.k dk LisDVªe] çdk'k fo|qr~ çHkko] d‚EiVu çHkko vkSj eSDl Iykad dh DokaVe ifjdYiuk ij vkèkkfjr mudh O;k[;kA d.kksa ds rjax xq.k&yqÃl Mh czksxyh dh inkFkZ rjaxksa dh ifjdYiuk rFkk Msfolu&teZj ds ç;ksx rFkk Fk‚elu ds ç;ksx }kjk mudk çk;ksfxd lR;kiuA |
8 |
4 |
DokaVe ;kaf=dh dk ifjp; nzO; rjaxsa&xf.krh; fu:i.k] rjax nSè;Z] rjax lewg dh voèkkj.kk] lewg ¼d.k½ osx] dyk ¼rjax½ osx rFkk lewg vkSj dyk osx ds e/; lacaèkA rjax Qyu& fØ;kRed :i] rjax Qyu dk lkekU;hdj.k] yEcdksf.kd (v‚FkksZxksuy) rFkk ÁlkekU;d (v‚FkksZu‚eZy) rjax Qyu rFkk cksuZ fu;e ds vkèkkj ij rjax Qyu dh çkf;drkRed O;k[;kA |
7 |