Categories
- Pharmacy
-
Nursing
-
MBA
-
BBA
- U.P. State University
- Veer Bahadur Singh Purvanchal University, Jaunpur
- Chaudhary Charan Singh University, Meerut
- Dr. Bhimrao Ambedkar University, Agra
- Chhatrapati Shahu Ji Maharaj University, Kanpur
- Mahatma Jyotiba Phule Rohilkhand University, Bareilly
- Mahatma Gandhi Kashi Vidyapith, Varanasi
- Dr. Ram Manohar Lohia Avadh University, Ayodhya
- Deen Dayal Upadhyaya Gorakhpur University
- Prof. Rajendra Singh (Rajju Bhaiya) University, Prayagraj
-
BCA
- UP State Universities
- University of Pune
- I.K.Gujral Punjab Technical University (PTU)
- University of Rajasthan
- Rashtrasant Tukadoji Maharaj Nagpur University
- Uttar Pradesh NEP2020
- University of Rajasthan ,Jaipur (According to NEP-2020)
- BCCA (B. Com - Computer Science)
- Haryana
- West Bengal
- BBA (CA)
- PUNE BCA (Sci,Commerce)/B.Com (CA)
- Dr. A. P. J. Abdul Kalam Technical University, Lucknow ( AKTU )
- MCA
-
B Ed
- Lucknow University B.Ed Books
- Chaudhary Charan Singh University/Maa Shakambhari University, Saharanpur
- Dr Bhim Rao Ambedkar University, Agra
- Mahatma Gandhi Kashi Vidyapeeth, Varanasi
- Chhatrapati Shahu Ji Maharaj University
- Prof. Rajendra Singh (Rajju Bhaiya) University, Prayagraj (PRSU)
- Mahatma Jyotiba Phule Rohilkhand University(Mjpru), Bareilly
- Dr. Ram Manohar Lohia Avadh University, Ayodhya
- Bundelkhand University, Jhansi
- B.A,B.ed
- B.Sc, B.ed
- Deen Dayal Upadhyaya Gorakhpur University
- Veer Bahadur Purvanchal University (VBPU)
- Maharaja Suhel Dev State University ,Azamgarh (MSDSU)
- Raja Mahendra Pratap Singh State University, Aligarh (RMPSSU)
- Barkatullah Vishwavidyalaya (Bhopal)
- Jiwaji University (Gwalior)
- Vikram University (Ujjain)
- Dr. Harisingh Gour University (Sagar)
- Devi Ahilya Vishwavidyalaya (Indore)
- Rani Durgavati Vishwavidyalaya (Jabalpur)
- Awadhesh Pratap Singh University (Rewa)
- Maharaja Chhatrasal Bundelkhand University (Chhatarpur)
- D. EL. ED
- TET
-
B Com
-
B Sc
- B.Sc. U.P. State Universities Common Syllabus NEP
- Veer Bahadur Singh Purvanchal University, Jaunpur
- University of Lucknow
- Chaudhary Charan Singh University, Meerut
- Madhya Pradesh
- Chhatrapati Shahu Ji Maharaj University, Kanpur
- Dr. Bhimrao Ambedkar University, Agra
- Mahatma Gandhi Kashi Vidyapith, Varanasi
- DEEN DAYAL UPADHYAYA GORAKHPUR UNIVERSITY
- Prof. Rajendra Singh (Rajju Bhaiya) University, Prayagraj
- Dr. Ram Manohar Lohia Avadh University, Ayodhya
- Mahatma Jyotiba Phule Rohilkhand University, Bareilly
- Uttarakhand State Universities
- B.Sc. Bihar Universities Common Syllabus NEP
- University of Rajasthan (Jaipur)
- Haryana
-
Bachelor of Arts [B.A.]
- B.A. Of U.P. State Universities Common Syllabus NEP
- Veer Bahadur Singh Purvanchal University, Jaunpur
- University of Lucknow
- Chaudhary Charan Singh University, Meerut
- Chhatrapati Shahu Ji Maharaj University, Kanpur
- Dr. Bhimrao Ambedkar University, Agra
- Mahatma Gandhi Kashi Vidyapith, Varanasi
- Deen Dayal Upadhyaya Gorakhpur University
- Prof. Rajendra Singh (Rajju Bhaiya) University, Prayagraj
- Dr. Ram Manohar Lohia Avadh University, Ayodhya
- Mahatma Jyotiba Phule Rohilkhand University, Bareilly
- Madhya Pradesh
- Uttarakhand
- Bihar
- University of Rajasthan (Jaipur Syllabus as Per NEP2020)
- Haryana NEP-2020
- B Tech
- LLB
- SWA Education
Calculus And Differential Equations ( рдХрд▓рди рдПрд╡рдВ рдЕрд╡рдХрд▓ рд╕рдореАрдХрд░рдг) Paper-II
ISBN- 978-93-90570-07-2
AUTHORS (ENGLISH)- Dr. Abha Tenguria, Dr. Jay Prakash Tiwari
Hindi- Prof. Shadab Khatoon
Tax excluded
ISBN- 978-93-90570-07-2
AUTHORS (ENGLISH)- Dr. Abha Tenguria, Dr. Jay Prakash Tiwari
Hindi- Prof. Shadab Khatoon
┬а ┬а ┬а ┬а ┬а ┬а ┬а ┬а ┬а ┬а ┬а ┬а ┬а ┬а ┬а ┬а ┬а ┬а ┬а ┬а ┬а ┬а ┬а ┬а ┬а ┬а ┬а ┬а ┬а ┬а ┬а ┬а ┬а ┬а ┬а ┬а ┬а ┬а ┬а ┬а ┬а ┬а ┬а ┬а ┬а ┬а ┬а ┬а ┬а ┬а ┬а ┬а ┬аSyllabus
┬а ┬а ┬а ┬а ┬а ┬а ┬а ┬а ┬а ┬а ┬а ┬а ┬а ┬а ┬а ┬а ┬а ┬а ┬а ┬а ┬а ┬а ┬а ┬а ┬а ┬а ┬а ┬а ┬а ┬а ┬а ┬а ┬а Calculus and Differential Equations
┬╝dyu ,oa vody lehdj.k┬╜
┬а ┬а ┬а ┬а ┬а ┬а ┬а ┬а ┬а ┬а ┬а ┬а ┬а ┬а ┬а ┬а ┬а ┬а ┬а ┬а ┬а ┬а ┬а ┬а ┬а ┬а ┬а ┬а ┬а┬аCourse Code: S1-MATH2T (Paper II) ┬╝├з'ui= II┬╜
|
Units |
Topics |
|
|
I |
1.1 ┬а┬а┬аHistorical background: 1.1.1 Development of Indian Mathematics: Ancient and Early Classical Period (till 500 CE) 1.1.2 A brief biography of Bhaskaracharya (with special reference to Lilavati) and Madhava 1.2 ┬а┬а┬аSuccessive differentiation 1.2.1 Leibnitz theorem 1.2.2 MaclaurinтАЩs series expansion 1.2.3 TaylorтАЩs series expansion 1.3┬а┬а ┬аPartial Differentiation 1.3.1 Partial derivatives of higher order 1.3.2 EulerтАЩs theorem on homogeneous functions 1.4 ┬а┬а┬аAsymptotes 1.4.1 Asymptotes of algebraic curves 1.4.2 Condition for Existence of asymptotes 1.4.3 Parallel Asymptotes 1.4.4 Asymptotes of polar curves |
|
|
II |
2.1 ┬а┬а┬аCurvature 2.1.1 Formula for radius of Curvature 2.1.2 Curvature of origin 2.1.3 Centre of Curvature 2.2 Concavity and Convexity 2.2.1 Concavity and Convexity of curves 2.2.2 Point of Inflexion 2.2.3 Singular point 2.2.4 Multiple points 2.3 Tracing of curves 2.3.1 Curves represented by Cartesian equation 2.3.2 Curves represented by Polar equation |
|
|
III |
3.1 ┬а┬а┬аIntegration of transcendental functions 3.2┬а┬а ┬аIntroduction to Double and Triple Integral 3.3 ┬а┬а┬аReduction formulae 3.4 ┬а┬а┬аQuadrature 3.4.1 For Cartesian coordinates 3.4.2 For Polar coordinates 3.5 ┬а┬а┬аRectification 3.5.1 For Cartesian coordinates 3.5.2 For Polar coordinates |
|
|
IV |
4.1 ┬а┬а┬а┬аLinear differential equations 4.1.1 Linear equation 4.1.2 Equations reducible to the linear form 4.1.3 Change of variables 4.2┬а ┬а┬а┬аExact differential equations 4.3 ┬а┬а┬а┬аFirst order and higher degree differential equations 4.3.1 Equations solvable for x, y and P 4.3.2 Equations homogenous in x and y 4.3.3 ClairautтАЩs equation 4.3.4 Singular solutions 4.3.5 Geometrical meaning of differential equations 4.3.6 Orthogonal trajectories |
|
|
V |
5.1 Linear differential equation with constant coefficients 5.2 Homogeneous linear ordinary differential equations 5.3 Linear differential equations of second order 5.4 Transformation of equations by changing the dependent/ independent variable 5.5 Method of variation of parameters. |
|
|
bdkbZ |
fo"k; |
|
|
I |
1.1.┬а┬а┬а ,sfrgkfld i`"BHkwfe 1.1.1. Hkkjrh; xf.kr dk fodkl& ┬а├зkphu vkSj ├зkjfEHkd fpj├зfrf"Br dky ┬╝500 lhbZ rd┬╜ 1.1.2. HkkLdjkpk;Z ┬╝yhykorh ds fo'ks"k lUnHkZ esa┬╜ vkSj ek/ko dh laf{kIr thouhA 1.2. ┬а┬аm├Щkjks├Щkj vodyu 1.2.1. yScuht ├зes; 1.2.2. eSDykfju Js.kh }kjk foLrkj 1.2.3. Vsyj Js.kh }kjk foLrkj 1.3. ┬а┬аvkaf'kd vodyu 1.3.1. mPp dksfV ds vkaf'kd vodyt 1.3.2. le?kkr Qyuksa ij vk;yj ├зes; 1.4. ┬аvuUrLi'khZ 1.4.1. chth; o├Шksa dh vuUrLif'kZ;ksa 1.4.2. vuUrLi'khZ ds vfLrRo gksus dk ├зfrcU?k 1.4.3. lekUrj vuUrLif'kZ;k┬б 1.4.4. /kzqoh; o├Шksa dh vuUrLif'kZ;k┬б |
|
|
II |
2.1. ┬а┬аo├Шrk 2.1.1. o├Шrk f=T;k ds fy, lw= 2.1.2. ewy fcUnq ij o├Шrk 2.1.3. o├Шrk dsU├ж 2.2. ┬а┬аm├Щkyrk ,oa voryrk 2.2.1. o├Шksa dh m├Щkyrk ,oa voryrk 2.2.2. ufr ifjorZu fcUnq 2.2.3. fofp= fcUnq 2.2.4. cgqy fcUnq 2.3. ┬а┬а┬а┬аo├Шksa dk vuqjs[k.k 2.3.1. dkrhZ; lehdj.kksa }kjk fu:fir o├Ш 2.3.2. /kzqoh; lehdj.kksa }kjk fu:fir o├Ш |
|
|
III |
3.1. ┬а┬аvchth; Qyuksa dk lekdyu 3.2.┬а┬а┬а f}d ,oa f=d lekdy dk ifjp; 3.3. ┬а┬а┬аleku;u lw= 3.4. ┬а┬а┬а┬а{ks=Qyu 3.4.1. dkrhZ; funsZ'kkadksa ds fy, 3.4.2. /kzqoh; funsZ'kkadksa ds fy, 3.5. ┬а┬аpkidyu 3.5.1. dkrhZ; funsZ'kkadksa ds fy, 3.5.2. /kzqoh; funsZ'kkadksa ds fy, |
|
|
IV |
4.1. ┬а┬аjSf[kd vody lehdj.k 4.1.1. jSf[kd lehdj.k 4.1.2. jSf[kd lehdj.k esa lekus; vody lehdj.k 4.1.3. pjksa dk ifjorZu 4.2. ┬а┬а;FkkrFk vody lehdj.k 4.3. ┬а┬а├зFke dksfV ,oa mPp ?kkrh; vody lehdj.k 4.3.1.┬а x, y vkSj p esa gy gksus ;ksX; 4.3.2. x vkSj y esa le?kkr lehdj.k 4.3.3. Dysjks dk lehdj.k 4.3.4. fofp= gy 4.3.5. vody lehdj.kksa ds T;kferh; vFkZ 4.3.6. ykfEcr laNsfn;k┬б |
|
|
V |
5.1. ┬а┬а┬а┬аvpj xq.kkadksa okys jSf[kd vody lehdj.k 5.2. ┬а┬аlk/kkj.k jSf[kd le?kkr vody lehdj.k 5.3. ┬а┬аf}rh; dksfV ds jSf[kd vody lehdj.k 5.4.┬а ┬а┬аijrU=@LorU= pj ds ifjorZu }kjk lehdj.kksa dk :ikUrj.k 5.5. ┬а┬а├зkpy fopj.k fof/k |
|
14 other products in the same category:
Your review appreciation cannot be sent
Report comment
Report sent
Your report cannot be sent
Write your review
Review sent
Your review cannot be sent






